ImageNet分数越高,生成反而越糊?iREPA给出解释
ImageNet分数越高,生成反而越糊?iREPA给出解释学霸的谎言被揭穿!一篇来自Adobe Research的论文发现,高语义理解并不会提升生成质量,反而可能破坏空间结构。用iREPA简单修改,削弱全局干扰,生成质量立即飙升 。
来自主题: AI技术研报
8747 点击 2025-12-23 10:05
学霸的谎言被揭穿!一篇来自Adobe Research的论文发现,高语义理解并不会提升生成质量,反而可能破坏空间结构。用iREPA简单修改,削弱全局干扰,生成质量立即飙升 。
论文第一作者为余鑫,香港大学三年级博士生,通讯作者为香港大学齐晓娟教授。主要研究方向为生成模型及其在图像和 3D 中的应用,发表计算机视觉和图形学顶级会议期刊论文数十篇,论文数次获得 Oral, Spotlight 和 Best Paper Honorable Mention 等荣誉。此项研究工作为作者于 Adobe Research 的实习期间完成。
论文一作刘少腾,Adobe Research实习生,香港中文大学博士生(DV Lab),师从贾佳亚教授。主要研究方向是多模态大模型和生成模型,包含图像视频的生成、理解与编辑。作者Tianyu Wang、Soo Ye Kim等均为Adobe Research Scientist。